

FRANCO CASPE & Andrea Martelloni

DEEP LEARNING FOR DSP ENGINEERS: CHALLENGES AND TRICKS TO BE PRODUCTIVE WITH AI IN REAL-TIME AUDIO

Who we are

centre for digital music

Andrea Martelloni

PhD Candidate at Artificial Intelligence and Music CDT, Queen Mary University of London. DSP engineer, guitar player/songwriter.

Franco Caspe

PhD Candidate at Artificial Intelligence and Music CDT, Queen Mary University of London. Electronic & Computer Vision Engineer, guitar player.

What this talk is not about

Not about Deep Learning frameworks.

Not a hands-on DL tutorial.

Not about model optimisation for efficiency.

Not about (offline) Music Information Retrieval (MIR).

Not about LLMs.

Not about symbolic music.

What this talk is about

We want to make DL for Audio more approachable from your point of view.

We will focus on the use of DL for **real-time musical audio**, e.g. a plugin in a DAW.

We will build upon **DSP engineering** knowledge.

We will present our own experiences in building DL-based audio tools.

Outline

Uses of DL in audio

Basic working principles of DL

Steps of the design of a DL model through our experiences:

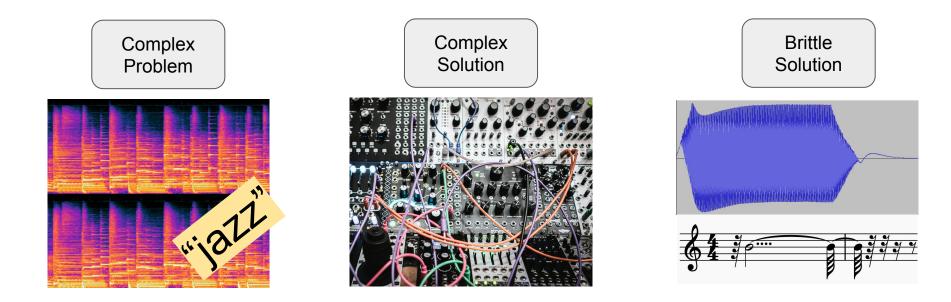
The HITar

Bessel's Trick

Takeaways and lessons learned

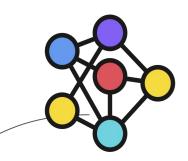
Uses of Deep Learning in Audio

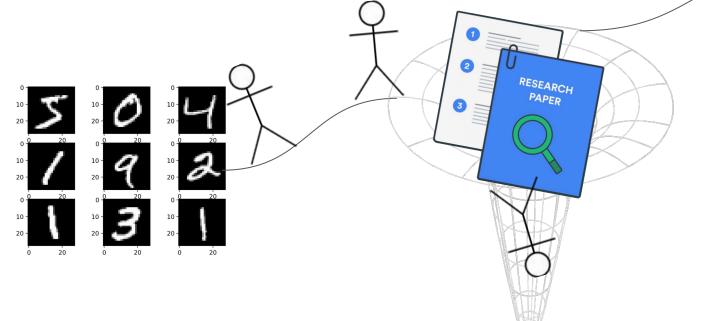
What is Deep Learning good for?



We optimize a system with **data**, without explicitly defining **how** to fit that data.

Kickstarting a DL 4 Audio Adventure: Don't work from first principles!



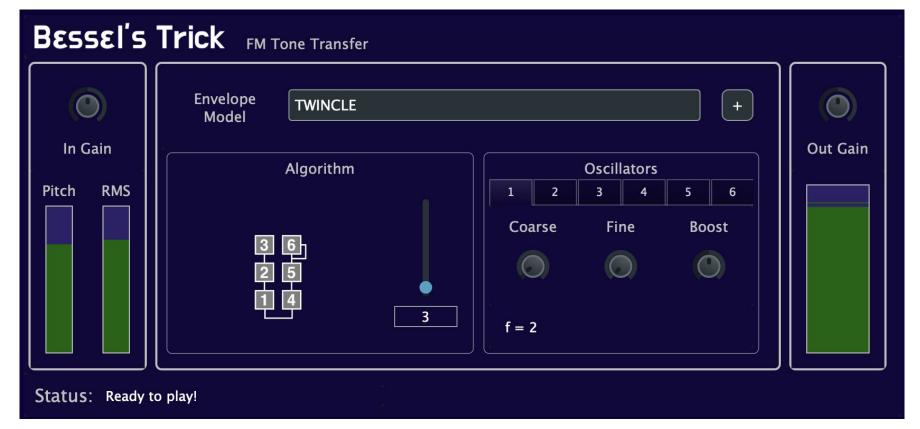


How to start making sense of Deep Learning?

• We are going to use **informed intuition** from DSP engineering knowledge.

• We are going to walk you through our **projects** and **experiences**,

• Recalling how we used our **DSP background** to **navigate** the complexities of DL.

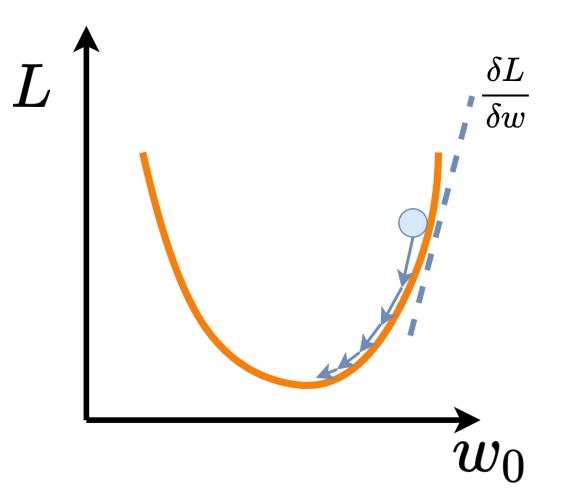


Augmented guitar capturing percussive techniques on the acoustic guitar.

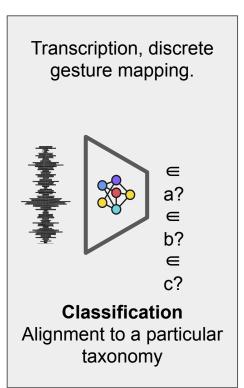
Expressive gesture representation: complex/brittle deterministic solutions.

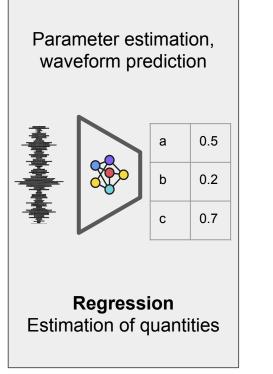
How Deep Learning works

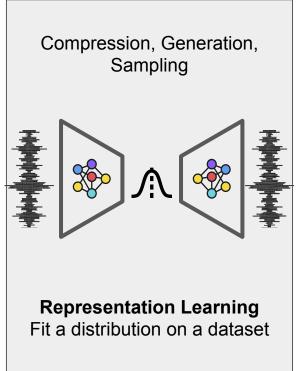
Overview INPUT Model Error Dataset Signal GROUND Loss TRUTH



Relevant ML Tasks for Real-Time Audio



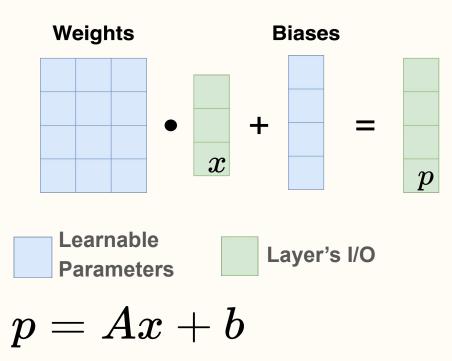




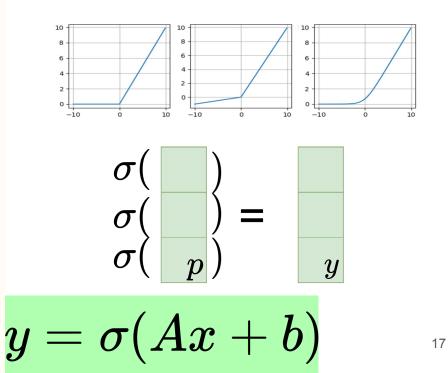
Overview INPUT PREDICTION Model δL $\overline{\delta w}$ Dataset GROUND Loss TRUTH

The Building Blocks

Matrix Multiplication

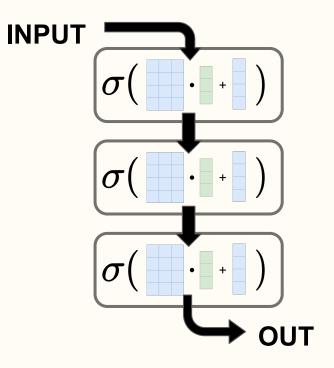


Activation Functions



Architectures

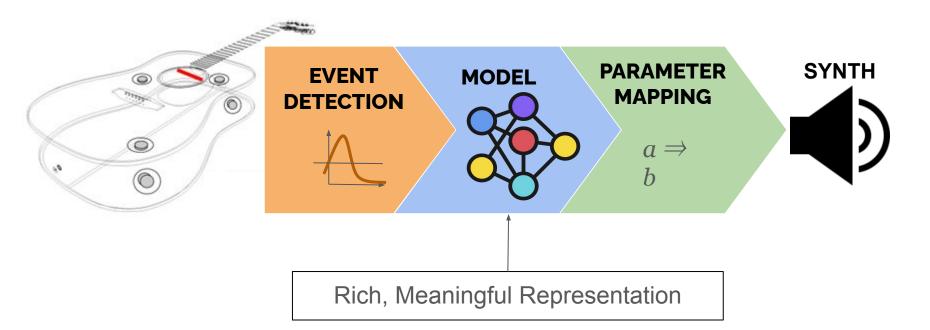
Stacking Operations





- Dense Layer
- Convolution
- Recurrency

The HITar's pipeline



Where I started from

Representation of musical/artistic gestural language with a DL model.

- Real-time Automatic Drum Transcription. (Jacques 2018, MA 2021)
- Semantic description of musical gestures and dance. (Murray-Browne 2021)

Jacques and Roebel, 'Automatic Drum Transcription with Convolutional Neural Networks'. DAFx 2018.

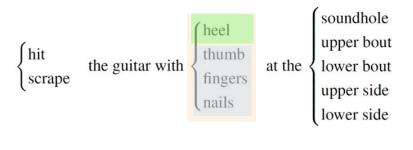
MA, Bhattacharjee, and Rao, 'Four-Way Classification of Tabla Strokes with Models Adapted from Automatic Drum Transcription'. ISMIR 2021.

Murray-Browne and Tigas, 'Latent Mappings'. NIME 2021.

The task behind the HITar

The "language"

Taxonomy of percussive playing



CLASSIFICATION

The "nuance"

Represent sound events uniquely based on what they mean



Both things at the same time!

The Data for the HITar

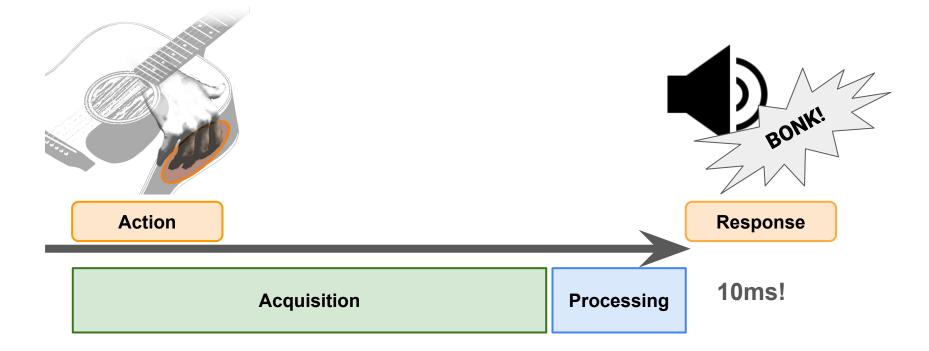
Making good data was the **first**, **longest** and most **expensive** part of my project.

Factors

Make detailed labels!

REAScript (and reapy) are your friends...;)

The Real-Time Constraint of the HITar



McPherson, Jack, and Moro, 'Action-Sound Latency: Are Our Tools Fast Enough?'. NIME 2016.

Data Representation

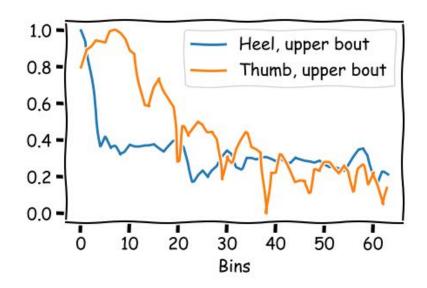
Representation

Input data:

- First 10 ms of the event
- Input representation: Downsampled magnitude spectrum

Data augmentation

Phase inversion, filtering, clipping...



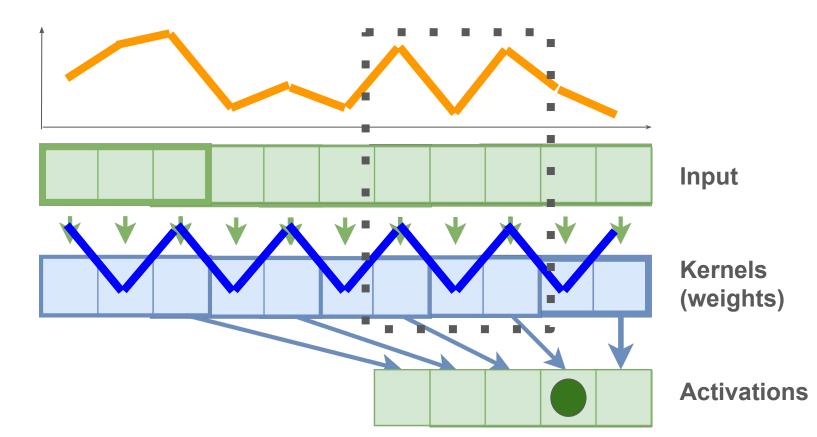
Intuitions behind the HITar's model

Task: learn a meaningful, readable representation of guitar body hits.

Input: magnitude spectrum.

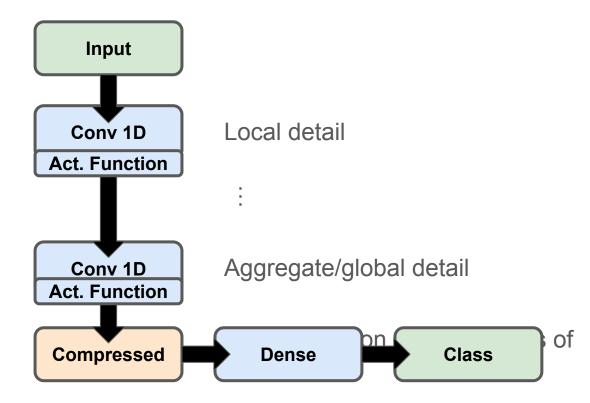
Intuition: convolution to find patterns in spectra.

Extracting features with Convolutional Layers



27

Convolutional Encoding



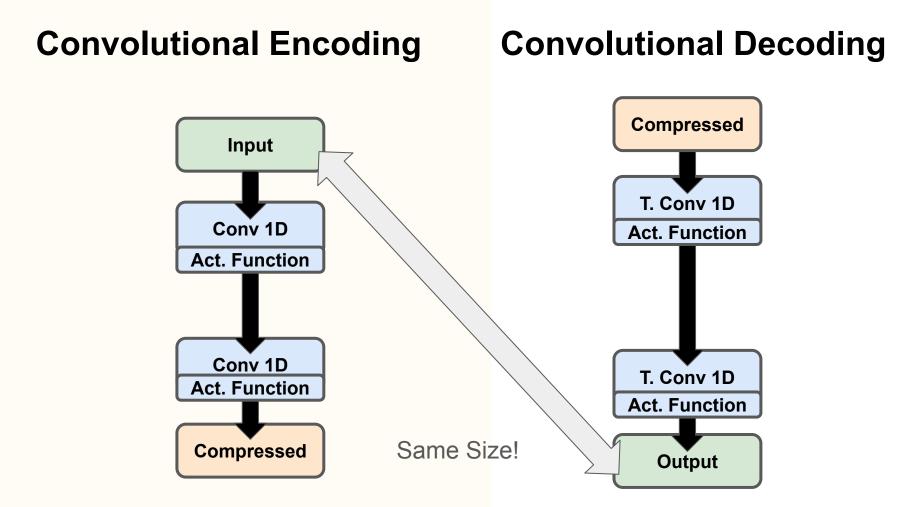
HITar - features of each <u>unique</u> hit?

In a musical instrument, there are many ways to play the same thing.

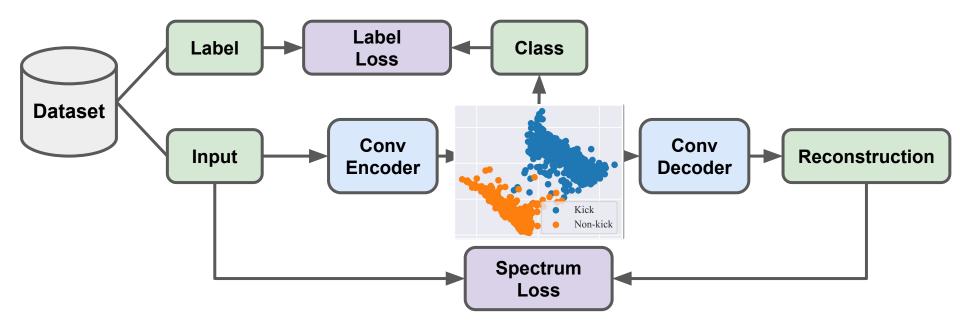
Can we capture that in a NN?

Intuition: expand the compressed representation back, to reproduce the input.

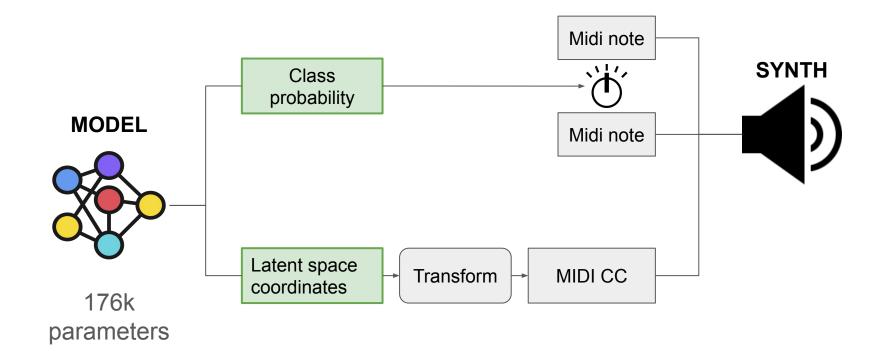
We can make a CNN de-compress data!



CNN for AutoEncoding



The Mapping

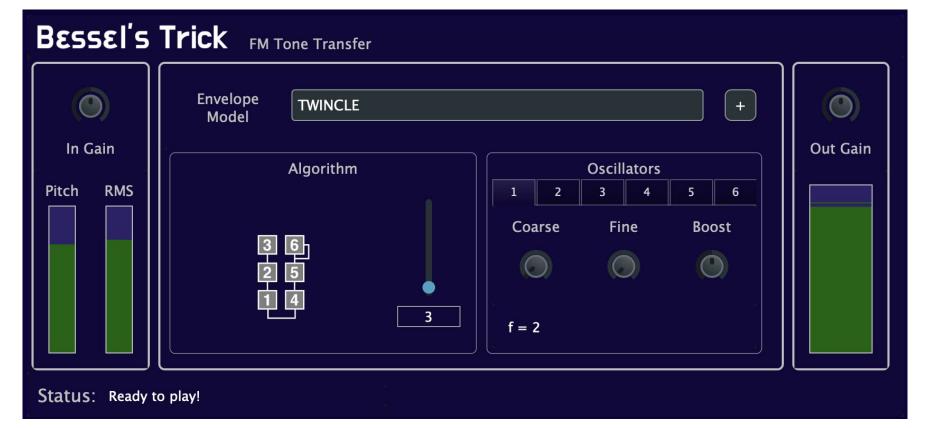


...in action!

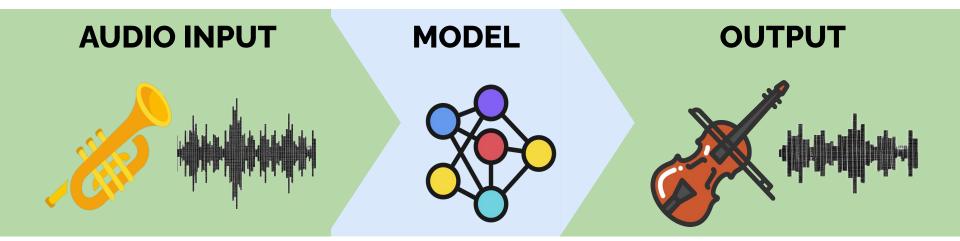
Good data is fundamental.

...but DSP engineering knowledge helps with data augmentation.

Real-time is a **constraint**, not an optimisation.

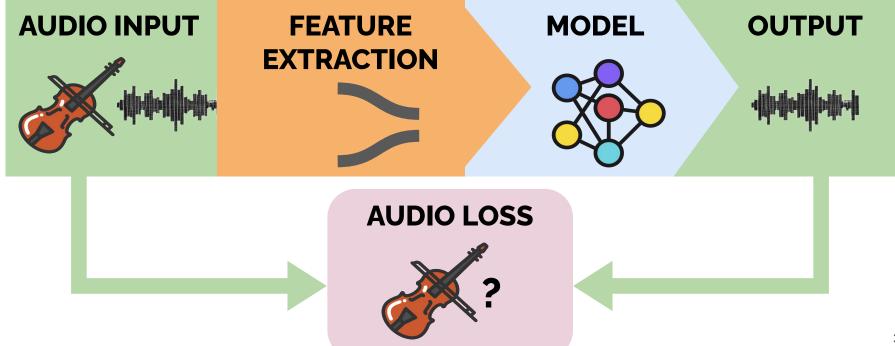


Tone Transfer

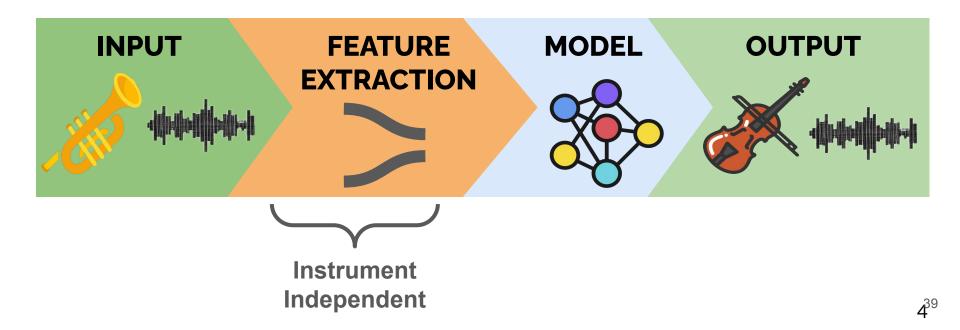


Design Premises

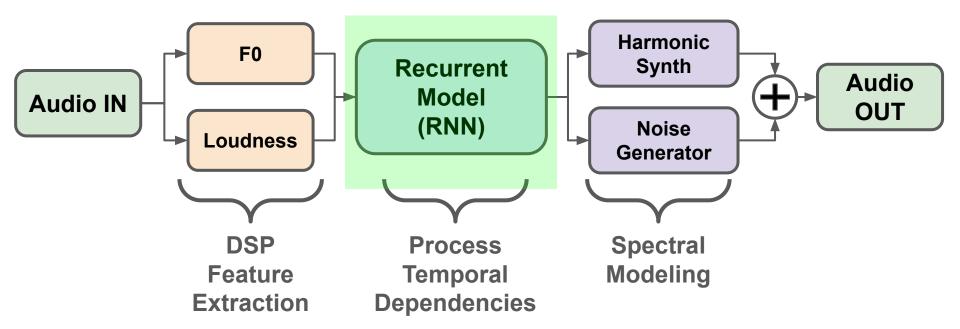
Tone Transfer Pipeline



The claim

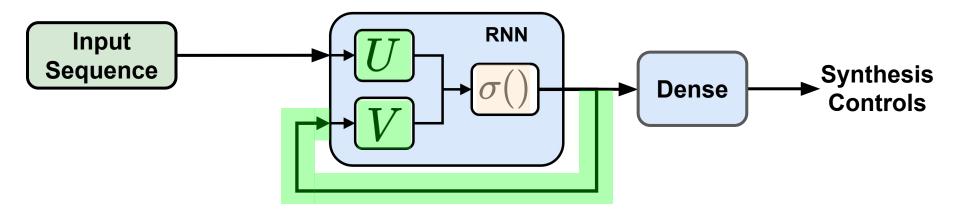


Our Reference Model: The DDSP Decoder (simplified)



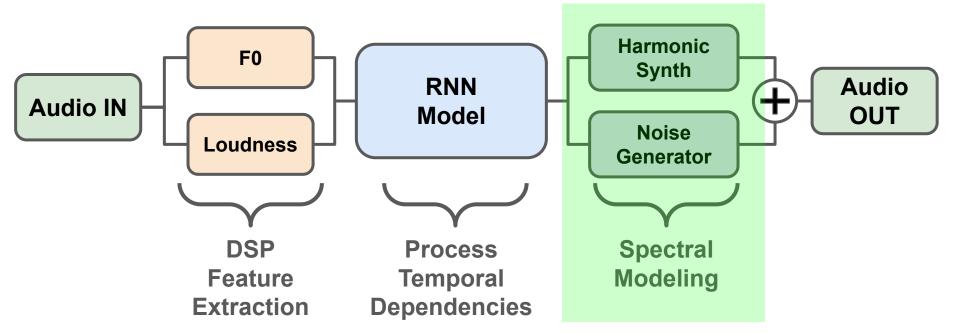
Engel et. al. DDSP: Differentiable Digital Signal Processing. ICLR 2020

Temporal modelling with RNNs

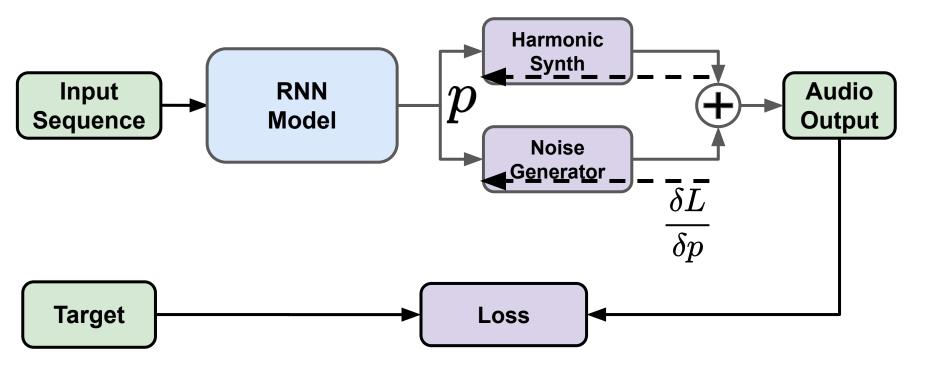


• Temporal aggregation through feedback, like an IIR filter

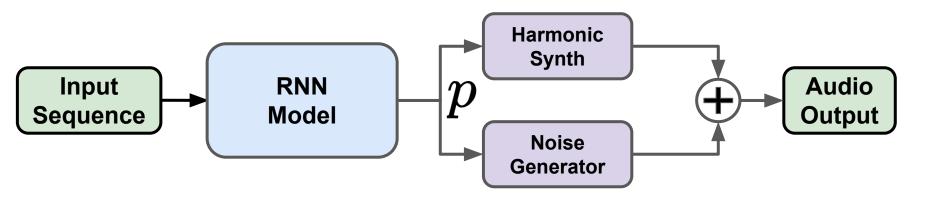
Reference Tone Transfer Model



Differentiable Signal Processing



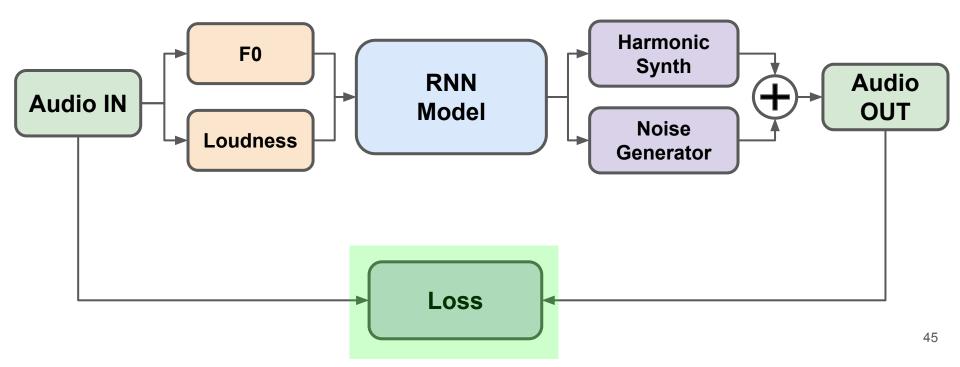
Differentiable Signal Processing



- Inductive bias towards Signal Generation / Processing.
- Oscillators, Filter Banks, Compressors, Waveshapers, FM, Reverb, FFT, Denoisers . . .

Hayes et. al. "A Review of Differentiable Digital Signal Processing for Music & Speech Synthesis". Arxiv Preprint Steinmetz et. al. "High-Fidelity Noise Reduction with Differentiable Signal Processing". AES

Reference Tone Transfer Model



Loss Functions for Audio

$$\| \psi \|_{H^{1}(W)} \xrightarrow{} dl(y) \xrightarrow{} U^{1}(y) \xrightarrow{} y \xrightarrow{} \psi \|_{H^{1}(W)} \xrightarrow{} U^{1}(y) \xrightarrow{}$$

• Suitable for sample-by-sample generation

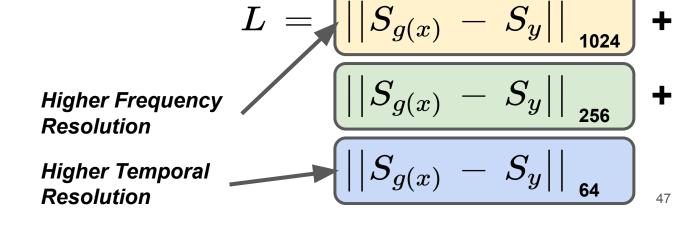
Loss Functions for Audio

$$x \rightarrow dl() \rightarrow Loss \rightarrow y$$

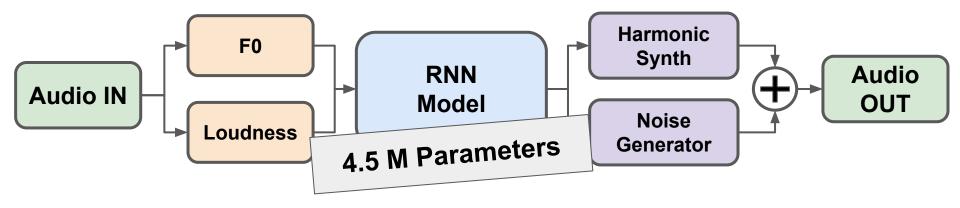
Sample-by-sample Generation

- MAE / MSE
- **Block-by-Block Generation**
- Multi Scale

Spectral Loss

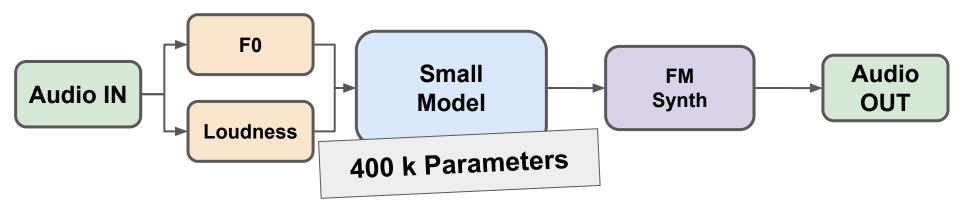


Reference Tone Transfer Model

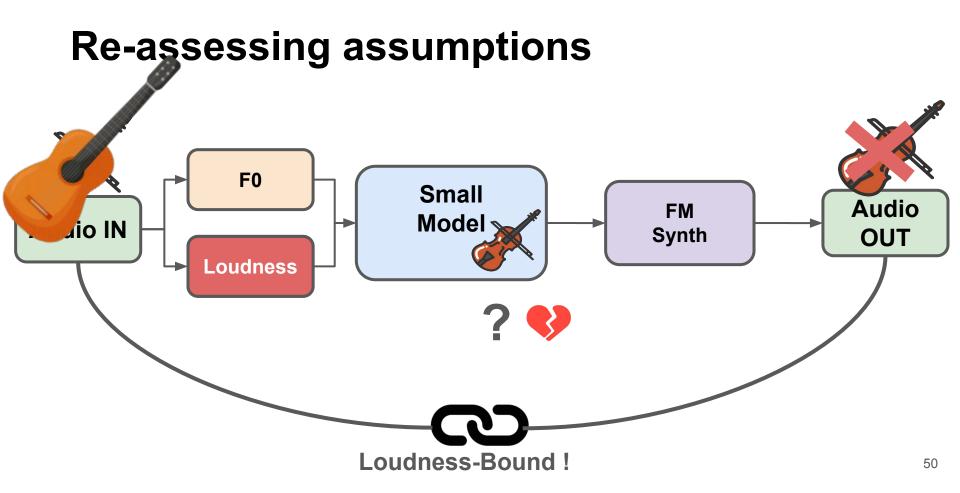


- Block by Block Operation
 - Suitable for Real-Time.

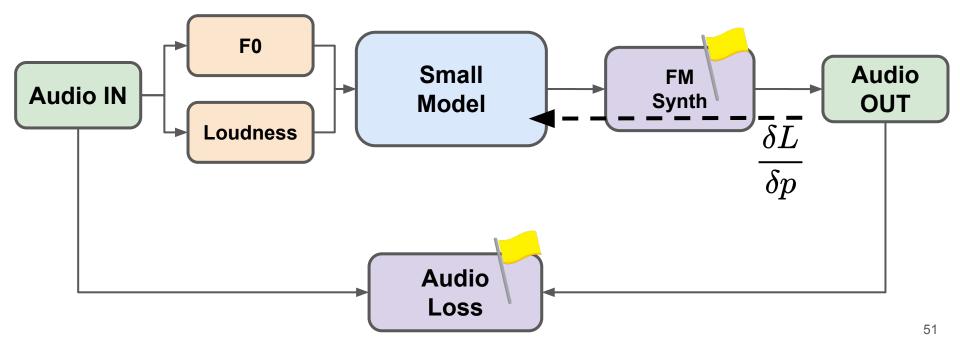
Idea: use a compact yet versatile synth (FM)



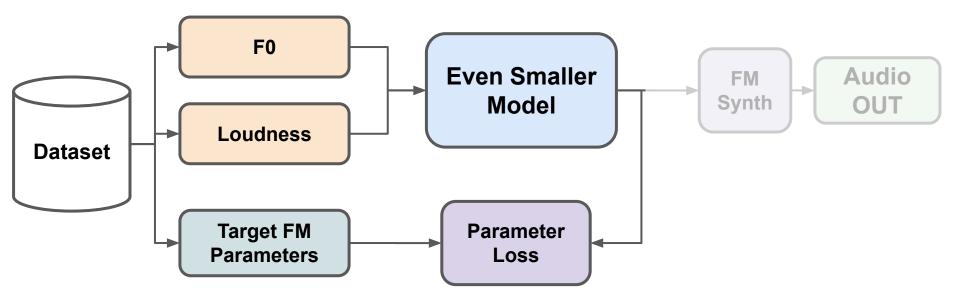
- Works great on the test set!
- 10x Smaller, works in real time!
- NOT Great during live use.



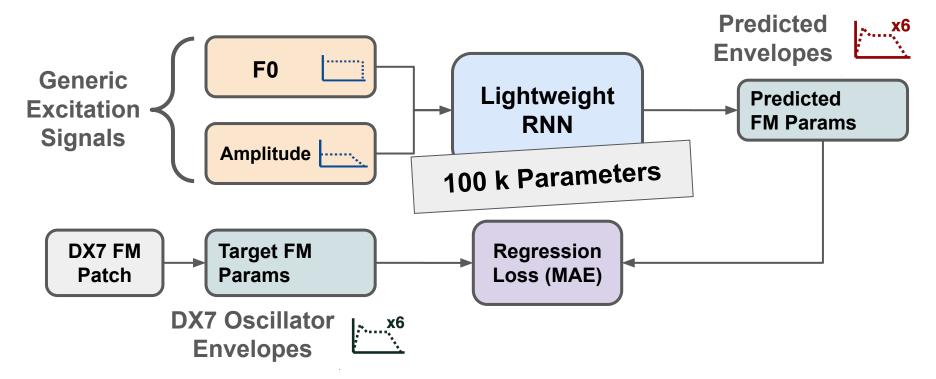
Using FM Synthesis with Audio Losses



Skipping the Synth during Training

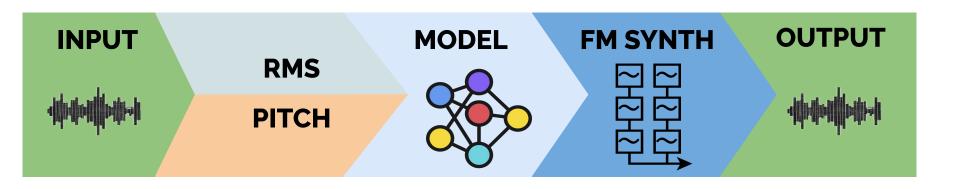


Skipping the Synth during Training



Caspe et. al. "FM Tone Transfer with Envelope Learning" Audio Mostly 2023

Bessel's Trick FM Tone Transfer Pipeline



Takeaways

Have multiple loss functions at hand.

DSP Primitives can help simplify the network architecture.

Think of what is **explicitly** and **implicitly** learned in the model.

Final Remarks

Takeaways

- There's a strong DSP intuition behind DL for Audio.
- Clarify your real-time constraints early.
- Don't work from first principles.
- Be data-driven
 - Think about WHAT data.
 - Think about HOW the data is treated.

The Augmented Instruments Lab is recruiting!

- **1-2 PhD positions**
- 1 postdoc position

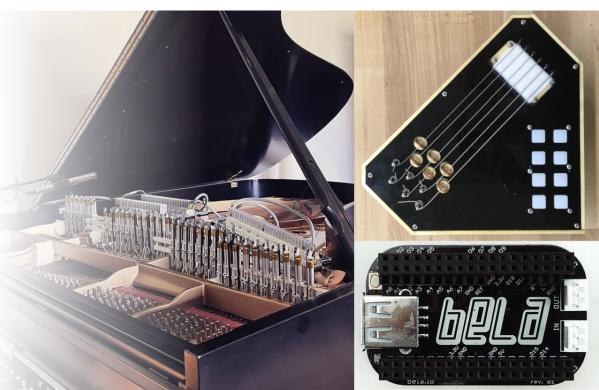
Areas of interest:

- Musical interaction
- Embedded hardware for audio and sensors
- Critical perspectives on technology and culture

Applications due December/January

See instrumentslab.org

Email: andrew.mcpherson@imperial.ac.uk



Thank you

@the_hitar

@caspefranco

