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I. INTRODUCTION

Variational inference allows the estimation of optimal pa-
rameters in probabilistic models for which an exact marginal-
ization cannot be computed due their complexity, by approx-
imating distributions that can be factorized across a set of
parametrized distributions.

A variational auto-encoder is a machine learning algo-
rithm that models probability distributions on train data by
extracting their parameters from two neural networks that
are connected in series. The first model called encoder,
receives the input to the auto-encoder and transforms it to a
latent representation. In general terms, a latent representation
contains all the extracted information of interest from the
input. The second model, called decoder, provides the output
to the auto-encoder; it receives a latent representation and
performs a reconstruction in the domain of the input.

The decoder model provides the parameters to a generative
distribution p(x|z), where x belongs to the input/output
space and z to the latent representation domain.

In this work, we use variational inference to obtain an
optimal set of parameters for a generative distribution p(x|z)
that transforms latent representations that follow a normal
distribution across L dimensions, p(z) = N(0,1,I) into
images of the form x € {0, I}D . Furthermore, z can be
sampled from its distribution in order to generate any image.
The probabilistic graphical model is shown in Figure [T}
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Fig. 1. Graphical model of the generative distribution.
An auto-encoder model is proposed to approximate the
distribution and generate the optimal set of parameters.

II. ALGORITHM DESCRIPTION

The task of interest is to sample z from its distribution and
use the generative model to generate the images, provided
that z has a dimensionality large enough to encode sufficient
information.

The generative distribution is modeled as a product of
D Bernoulli random variables with activation probability

equals to o(f!(z)) for j = 1,..,D, where o(.) is the
sigmoid activation function and 6 are the parameters of the
neural network that is represented by the f(.) function, that
complies with the decoder of the auto-encoder model.

The estimation of generative distribution’s parameters 6
cannot be done using Maximum Likelihood Estimation be-
cause pg(X) that would maximize the likelihood over a data
set X = {x1,%a,...,xny} € {0,1} is untractable due the
non linearities of p(x|z).

Variational inference is then used to approximate the best
decoder’s parameters by maximizing the lower bound of the
log marginal likelihood of our data set, approximating it to
log pe(X).

The optimization target is shown in Equation |1} on which
q¢(z|x) is a parametrized distribution that it is modeled to
factorize across multiple Gaussian distributions, and should
approximate p(z|x) to maximize the lower bound.
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The ¢4 (z|x) distribution’s mean and variance will be given
by the output of another neural network: M?(z) and V;z’(z)
for 7 =1, ..., L, respectively. This neural network complies
with the encoder part of the auto-encoder model.

Both sets of parameters 6 and ¢ can be found at the same
time by training both neural networks on a provided data
set. This is done by employing stochastic gradient descent
on the target, over mini batchs using the Autograd[1] library
and the ADAM[2] optimizer.

III. TASKS CARRIED OUT AND RESULTS

In this section the tasks carried out and the results obtained
are enumerated and discussed.

A. Training Loop Completion

The first two tasks were related to the completion of the
training process of the neural networks by means of the
implementation of both the optimization target calculation
and the training loop employing the ADAM optimizer.

The optimization target was implemented on the function
vae_lower_bound(), that receives the mini batch and outputs
the lower bound estimation on the mini batch. This function-
ality is performed on three stages.

The first stage, implemented in the function
sample _latent_variables_from_posterior() encodes every in-
stance b of the mini batch into a particular distribution



¢4(z|xp) and then performs one sampling for each distri-
bution (Monte Carlo approach) generating latent representa-
tions.

The second stage, uses the generative model to generate
images from the latent representations and then computes the
log probability of the output given the data, in the function
bernoulli_log _prob().

The third stage, compute_KL() calculates the KL diver-
gence that will be subtracted from the log probability to
obtain an estimate of the lower bound by averaging across
the mini batch.

Finally, in the main section of the Python script, the train-
ing loop over mini batchs was completed by implementing
the ADAM optimizer, for maximizing the target using the
noisy approximation of the gradient of the target computed
from the mini batch.

The maximization for the lower bound across 30 training
epochs is shown in Figure
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Fig. 2. Evolution of the Estimated Lower Bound.

B. Image generation using the generative model

The next subsection describes the set of tests that were
conducted in order to evaluate the performance of the genera-
tive model obtained from training the auto encoder. To obtain
the graphical representations from the generative model, a
sigmoid activation function was applied to the output of the
decoder, obtaining a probability image, or probability map
for each pixel, as shown in Equation 2] The images are
plotted using gray scale, with intensities from O to 1.

o(ff(z)) D;b=1,..,25. (2)

The first test consisted on drawing samples from the latent
representation distribution, p(z). 25 latent representations
were sampled from the normal distribution and used as the
input of the decoder network. The results are shown in Figure

The second test consisted on assessing the representation
capabilities of the auto-encoder by inputting a set of images
on the encoder network, to obtain for each instance the
parameters of the factors of the distribution p(z|x). The
means of the factors then was used as latent representation to
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Fig. 3. Images sampled from random prior.

re-synthesize the images as close as possible to the originals
using the decoder. The results are shown in Figure [ on
which 10 original images are shown above the respective 10
reconstructions from probability maps.
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Fig. 4. Original and reconstructed images.

The final test consisted on perform a graphical evaluation
of the probability maps generated on ambiguous latent vari-
ables. It was performed by firstly generating optimal latent
representations by processing pairs of images through the
encoder as in the previous test, obtaining distributions from
which the mean of latent variables was taken.

The pair of optimal latent representations was then linearly
interpolated on 25 steps, generating different linear combi-
nations of the vectors, with different weights for the first
and the second image in the pair. Five pairs were sampled
from the test set. The output probability images are shown
in Figure [5] and [6] on which it can be seen that there exist
an increase in the grey areas of the output probability maps,
depicting a pixel probability close to 0.5. This signifies a
decrease in the confidence of the output due the ambiguity
of the latent representation.
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Fig. 5. Reconstructed images from interpolated latent representations. Test
pairs 1 to 3.

IV. CONCLUSIONS

A non-linear, generative model was successfully optimized
by employing variational inference to obtain a set of optimal
parameters to generate images from a random prior. The
inference process maximizes the lower bound of the marginal
distribution, increasing the likelihood of the distribution and
the train data, proving successful to train the auto-encoder.

When assessing the performance of the generator, the best
results were obtained when using the encoder and extracting
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Fig. 6. Reconstructed images from interpolated latent representations. Test
pairs 4 and 5.

the mean of the factors, while the worst results were obtained
when generating ambiguous latent representations in the
interpolation test.

In this sense, it seems that a random number image of
some degree of quality can be directly obtained from the
prior distribution; this approach can be employed for data
generation purposes. Nevertheless, there exist optimal latent
representations, generated by the encoder, from which the
decoder network shows a high level of quality and certainty
on the output map. Hence, the auto-encoder configuration
can be employed for data compression.
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