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ABSTRACT
Tone Transfer is a novel deep-learning technique for interfacing a
sound source with a synthesizer, transforming the timbre of audio
excerpts while keeping their musical form content. Due to its good
audio quality results and continuous controllability, it has been
recently applied in several audio processing tools. Nevertheless, it
still presents several shortcomings related to poor sound diversity,
and limited transient and dynamic rendering, which we believe
hinder its possibilities of articulation and phrasing in a real-time
performance context.

In this work, we present a discussion on current Tone Trans-
fer architectures for the task of controlling synthetic audio with
musical instruments and discuss their challenges in allowing ex-
pressive performances. Next, we introduce Envelope Learning, a
novel method for designing Tone Transfer architectures that map
musical events using a training objective at the synthesis parame-
ter level. Our technique can render note beginnings and endings
accurately and for a variety of sounds; these are essential steps for
improving musical articulation, phrasing, and sound diversity with
Tone Transfer. Finally, we implement a VST plugin for real-time
live use and discuss possibilities for improvement.

CCS CONCEPTS
• Applied computing → Sound and music computing; • Com-
putingmethodologies→Neural networks; •Human-centered
computing → Interaction techniques.
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1 INTRODUCTION
Synthesizers can be very expressive instruments, whether con-
trolled by the ubiquitous keyboard [28], by augmented instruments,
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or instrument-like interfaces [1, 25, 26], or by whole new sets of
gestures enabled by novel controllers [8, 35].

Recent developments in integratingDeepNeural Networks (DNNs)
with audio generators have renewed interest in using the unaltered
audio of a musical instrument as a control source for a synthesizer.
One such example is the DDSP architecture and its derivatives
[5, 12, 16, 34], that allows for real-time control of a synthesizer
using a set of features extracted from an input audio signal. It has
been used to develop various creative timbre transformation appli-
cations, which we collectively refer to as Tone Transfer applications.
[3, 4, 24, 30].

We situate the scope of our work on audio-based synthesis con-
trol for real-time performances, looking at sonic diversity and syn-
thesizer phrasing and articulation. These essential components of
musical expression have been thoroughly studied for composition
with MIDI for decades [2, 43, 44] but we argue that they open
new challenges and possibilities when considering an audio-based
control approach. Transients at the beginnings of notes and the
transitions between notes play a vital role in defining the continuity
and flow ofmusical phrasing.We argue that a continuous control ap-
proach such as Tone Transfer could potentially learn mappings that
capture beginnings, endings, and the links between notes during
performance, generating musically articulated synthetic sounds.

In this work, we begin by examining the challenges faced by
existing Tone Transfer architectures when it comes to effectively
supporting aspects of musical expression such as phrasing, artic-
ulation, and sonic diversity. We argue that these challenges are
primarily linked to the training methods employed and the com-
monly used synthesis models. Next, we propose Envelope Learning
as a method to circumvent these issues. This technique revolves
around designing Tone Transfer architectures that focus on match-
ing synthesis parameters instead of audio features. Since our models
learn musical events at the level of synthesis control, they can repro-
duce quick changes in sound, such as the start and end of musical
notes, which are essential for musical phrasing.

We train the models to learn different tones by using patches
from a well-known FM synthesizer, which provides a diverse range
of sounds to work with. Finally, we implement our models on an
audio plugin for real-time performances and reflect on its perfor-
mance and possibilities for improvement. For training and deploy-
ing source code, see the online supplement 1. We expect our models
to complement existing Tone Transfer architectures and offer fur-
ther performance possibilities for live use and sound design.

1https://fcaspe.github.io/fmtransfer
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2 BACKGROUND
2.1 Synthesis control with audio signals
Audio-based control in synthesis has a longstanding history, ex-
emplified by pioneering instruments like the Roland guitar [19].
In recent times, a prevalent technique involves using onset de-
tectors and fundamental frequency trackers, enabling control of
a synthesizer through MIDI signals [11]. This method facilitates
the translation of audio input into synthesized sounds, offering a
versatile approach to musical control.

However, generating MIDI triggers through explicit note on-
set detection introduces a bottleneck in the gestural channel [18]
between the instrument and the synthesizer which may hinder
an expressive performance. In that regard, timbre characteristics
related to musical phrasings, such as variations in dynamics, fre-
quency spectrum, amplitude envelope, and attack transients [27],
are compressed into a single scalar velocity value. In MIDI, phrasing
is implicitly represented through the timing and velocities of a se-
quence of note events. Audio-to-MIDI converters typically identify
single notes at a time without consideration of longer sequences,
so any temporal jitter or inaccuracy in dynamics could result in a
disjointed sense of phrasing when the MIDI sequence is replayed
by a synthesizer.

In addition to MIDI-based control, alternative strategies have
been investigated, involving the extraction of continuous features
from the audio signal of a musical instrument to control synthesis
processes. In prior work, audio signals from instruments have been
utilized as oscillators [29]. This technique employs the audio signal
itself as an oscillator for generating synthesized sounds, a special
case of an Adaptive Digital Audio Effect [20, 39]. However, this
approach restricts the method’s versatility as it binds the sonic
characteristics of the input directly to the output limiting its range
of sonic possibilities.

Continuous control offers the possibility of better supporting
musical expression. Interestingly, by closely analyzing how notes
from an audio source are intertwined, we may also be able to fa-
cilitate longer phrasing arcs on the synthesizer. The problem now
resides in navigating the complexity of the mapping design. What
are the features we should extract, and how should we associate
them to support a variety of synthetic sounds? There are many
degrees of freedom, and the strategy becomes much less evident
[31].

One possible answer can be found in the work of Levitin et al.,
where they proposed a valuable framework for analyzing the pro-
cesses involved in a musical event control [21]. They outline distinct
stages of control within a musical event including the beginning,
middle, ending, and terminus of the event, and highlight that Digital
Musical Instruments (DMIs) often provide greater control over the
middle.

In this context, different beginnings and endings can encom-
pass musical articulation and serve as vital contextual links within
musical phrases [23]. The audio signal contains this important in-
formation within a very short duration and may require direct
attention and specific handling to accurately capture and preserve
these critical elements. These insights underscore the need for a
focused approach to address beginnings and endings explicitly.

2.2 Differentiable Signal Processing
The seminal work of Van Den Oord et. al. [38], spawned a novel
approach for data-driven audio generation and control called Neu-
ral Audio Synthesis. In this context, Deep Neural Networks (DNN)
learn complex synthesizers from audio corpora, that can be used
for composition [13], singing voice control [42] timbre transforma-
tion [17] and synthesizer parameter estimation [6], to name a few
applications.

Engel et. al. [12] proposed a method called Differentiable Sig-
nal Processing (DDSP) that combines neural networks and DSP
modules, such as synthesizers and audio effects, allowing an error
signal to be backpropagated through them. This approach enables
joint training of the whole pipeline, effectively biasing the network
to learn to control the DSP modules. It allows efficient sound gen-
eration with DNN models that can comfortably run in real-time
on a CPU [14] and yield impressive results on a variety of differ-
entiable synthesis architectures for musical instrument [5, 16, 34]
and singing voice rendering [42, 45].

2.3 Tone Transfer
Tone Transfer [4] is a promising application enabled by DDSP for
audio-based control of synthesizers. The supporting architecture,
called DDSP Decoder [12], learns to control parameters of a synthe-
sizer, conditioned by a frame-wise fundamental frequency (𝐹0) and
loudness sequences extracted from an input audio signal. These
characteristics are instrument-agnostic and relate uniquely to mu-
sical form; during inference, the model can support any musical
instrument signal that contains a tractable 𝐹0.

A continuously controllable synthesizer such as the DDSP De-
coder can potentially deal with the fine-grained characteristics of
note beginnings and endings, essential for phrasing. Nevertheless,
we note that certain design decisions related to its architecture
and training methods may hinder phrasing, articulation, and sound
diversity in a performance setting.

One problem is related to the training process, which aims to
resynthesize an audio corpus of a particular instrument from a set of
𝐹0 and loudness conditioning sequences, guided by the Multiscale
Spectrogram Loss [36, 42]. This involves a trade-off between time
and frequency resolution [32], affecting the model’s capacity of
discerning and synthesizing accurate instrument onsets, which
typically happen in the order of tens of milliseconds [41] and are
essential to convey distinct articulation and build musical phrases.

Transient rendering is also affected by the synthesizer architec-
tures typically employed in DDSP decoders. In the majority of the
cases, a harmonic source such as a harmonic synth [12], a wave-
shaper [16] or a wavetable [34] is paired with a noise synthesizer in
a setting that resembles a Spectral Modelling Synthesizer [33]. This
configuration is usually not sufficient for an accurate representation
of transients [9, 40].

Regarding sound diversity, we note that the resynthesis objective
implicitly ensures a high correlation between the input and output
loudness, as indicated in the original paper [12]. Since different
musical instruments have different loudness profiles, in many cases
performers expect the dynamic characteristics of the generated
audio to be different from those of the input. Losing this degree of
freedom may make the learned timbre track the dynamics of the
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input too closely, producing unnatural sounds and limiting sonic
diversity.

Another issue is related to the availability of training data. Single
musical instrument datasets are difficult to collect [22], and in
many cases, 𝐹0 may not be easy to extract, especially for synthetic
sounds. This also limits the amount and type of sounds that can be
synthesized with Tone Transfer.

Finally, it is worth noting that sound design practitioners are not
familiar with the spectral modeling synthesizers typically employed
for Tone Transfer. A well-known architecture with interpretable
parameters allows performers to intervene in the synthesis process
and manipulate results enhancing the possibilities of pre-trained
models [5].

2.4 FM Synthesis
Frequency Modulation (FM) synthesis is a well-known method to
generate complex sounds from a compact set of synthesis param-
eters [7]. One of the best-known implementations is the Yamaha
DX7, which utilizes a well-established linear FM synthesis archi-
tecture, that has been used in other works for applications such as
sound matching and neural audio synthesis [5, 6].

The DX7 generates its distinctive sound using six frequency-
modulated sinusoidal oscillators. Programming the synthesizer in-
volves configuring a patch that specifies various parameters for
each oscillator. These parameters include the routing, which de-
termines how the oscillators are interconnected (e.g., in a stacked
or additive manner), the frequency ratios of the oscillators relative
to the played note, as well as the Attack-Decay-Sustain-Release
(ADSR) parameters of its Envelope Generators (EGs).

During audio rendering, the oscillator’s frequency ratios and
routing remain fixed. Instead, the sound dynamics are primarily
controlled by the ADSR envelopes. These envelopes modulate the
output levels of each oscillator, influencing either their volume
or modulation index, depending on their interconnection. Sound
design on the DX7 involves configuring the routing, frequency
ratios, and ADSR parameters of the EGs.

3 METHOD
Existing Tone Transfer architectures have shown the ability to
learn relationships between control inputs and synthesizer features.
However, we have observed certain limitations in terms of transient
generation and sonic diversity that could restrict the performative
possibilities of the models.

We propose an alternative design method for a model that learns
relationships from a dataset of synthesis control signals extracted
from synthesizer patches and designed following the musical event
control model described by Levitin et al. [21]. The model learns
to render note beginnings, middles, and endings directly from a
continuous control source. We use an FM synthesizer based on the
Yamaha DX7 for which there is a wide variety of sounds available
on the web [37].

We divide our approach into three stages, shown in Figure 1,
namely a dataset generation step that creates event-aligned se-
quences from synthesizer patches, a training step we call Enve-
lope Learning that learns a mapping function 𝑔𝜙 between these

sequences, and an inference step where we deploy trained mod-
els into a Tone Transfer pipeline and use them to control an FM
oscillator block with audio signals.

Our current research shares similarities with our previous work,
where we utilize a neural network to control oscillator amplitudes
of an FM synthesizer based on a sequence of audio signal features
[5]. However, in contrast to our earlier approach, we introduce a
new design strategy that (1) avoids the reconstruction objective
and MSS loss, allowing decoupled dynamics (2) learns an input-to-
output mapping at the level of short frames of signal, allowing for
accurate transients, and avoiding the use of differentiable synthesis
components, and (3) does not require an audio corpus for training,
and instead can learn from a patch collection of the FM synthesizer.

3.1 Dataset Generation
In this step, we create a dataset of𝑀 training tuples (𝑎𝑖 , 𝑓 𝑖 , 𝑜𝑙𝑖 ), 𝑖 =
1, ...𝑀 , with 𝑎 = 𝑎1, ...𝑎𝐾 ∈ R and 𝑓 = 𝑓1, ...𝑓𝐾 ∈ R being sequences
of length 𝐾 modeling amplitude and fundamental frequency of a
monophonic audio input respectively. 𝑜𝑙 = 𝑜𝑙1, ...𝑜𝑙𝐾 ∈ R6 repre-
sent the linear output level envelopes of the six FM oscillators, that
we extract from a synthesizer patch. For training, we use (𝑎, 𝑓 ) as
input sequences to our model, and 𝑜𝑙 as supervision.

In order to generate the input sequences (𝑎𝑖 , 𝑓 𝑖 ) we take into
consideration the model proposed by Levitin et al., [21]. To simplify
the dataset generation process, we only consider separate notes as
musical events. For our Tone Transfer use case, an explicit note
beginning is determined by a sudden change in the input amplitude
contour 𝑎 and a valid 𝐹0 detected in 𝑓 . During the middle, the am-
plitude and fundamental frequency are sustained over time. Finally,
the ending of a note is characterized by a decay trajectory in am-
plitude, while the 𝐹0 remains valid until the terminus. Considering
this, we can model our amplitudes 𝑎 with a trapezoid generator, that
is, a step generator plus a decay ramp. The fundamental frequency
contour of a note can be represented with a step generator.

To obtain 𝑜𝑙𝑖 , we use a Python implementation of the Yamaha
DX7 ADSR Envelope Generators (EGs) adapted from a well-known
emulator [15]. These EGs can be programmed with a synthesizer
patch 𝑝 and actuated through MIDI to obtain the amplitude enve-
lope sequences of the six oscillators.

The dataset generation starts with a designer selecting a synthe-
sizer patch 𝑝 they want to enable for Tone Transfer. We program the
ADSR parameters of the EGswith 𝑝 and generate a set of MIDI notes
of random duration and with random velocity and note values.

For each note, we obtain the oscillator envelope sequences 𝑜𝑙𝑖 ,
and create the aligned input sequences (𝑎𝑖 , 𝑓 𝑖 ) following a simple
set of rules. When a "NOTE ON" message is received, we generate
a step response with an amplitude proportional to the velocity and
note value for 𝑎 and 𝑓 respectively. After the "NOTE OFF" event is
received, a linear decay ramp is rendered in 𝑎 until the last oscillator
envelope in 𝑜𝑙 reaches zero. During this time 𝑓 remains valid and
then is set to zero.

Next, the input sequences are normalized between [0, 1], estab-
lishing a linear range of 𝑎 and 𝑓 corresponding to MIDI velocity and
MIDI notes values respectively. The oscillator envelope sequences
fall in the range of [0, 2]; they are also normalized to a range within
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Figure 1: Design steps for our Tone Transfer system. a) we create a synthetic dataset of aligned sequences (𝑎, 𝑓 , 𝑜𝑙). 𝑎 and 𝑓
model the frame-wise amplitude and 𝐹0 trajectories of a monophonic audio signal, while 𝑜𝑙 are the oscillator output levels of
an FM synthesizer programmed with a patch 𝑝. b) We train a Recurrent Neural Network model 𝑔𝜙 to learn the correspondences
between the features 𝑎, 𝑓 and the controls 𝑜𝑙 reflected in the dataset. c) We deploy the RNN into a Tone Transfer pipeline. In
this context, 𝑔𝜙 processes frame-wise input features from real audio 𝑖𝑛 , and controls the envelopes of an FM oscillator bank
configured according to 𝑝.

[0, 1]. Finally, all sequences are padded with zeroes before and after
so that each training tuple features the same length.

The end result is a dataset that aligns two characteristics of
musical events (𝑎 and 𝑓 ) to synthesizer controls (𝑜𝑙 ) that can render
a specific timbre obtained from the patch. Since the input 𝑎 is
proportional to the velocity, note beginnings are characterized by
different amplitude discontinuities which in turn, are aligned with
the oscillator envelopes 𝑜𝑙 that render different onsets. Middles
are mostly aligned with the decay and sustain parts of 𝑜𝑙 , and
the decaying sections of note endings are synchronized with the
release sections of the envelopes. Figure 2 shows a plot of the first
six training instances of a dataset generated from the "E. PIANO
1" patch, a well-known DX7 electric piano patch, illustrating the
synchrony between inputs and oscillator envelopes.

It is important to recognize that musical instrument notes can
often display ambiguous behavior, and it is not always the case that
a decrease in amplitude indicates the end of a note or a sustained
amplitude indicates the middle. In a causal setting for real-time use,
we cannot be sure that a note is ending even if there is a decay am-
plitude trajectory in the input. Although the input trajectories used
in this setting may not fully represent a real-world scenario, they
are valuable in demonstrating the proof of concept and analyzing
opportunities for improvement.

3.2 Envelope Learning
To implement our system, we need a neural network model that can
learn the temporal relationships between the inputs (𝑎, 𝑓 ) and the
oscillator envelopes 𝑜𝑙 , rendering the attack and decay sections of
the control sequences after a discontinuity in the input is detected,
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Figure 2: Five training tuples of a dataset extracted from
the "E. PIANO 1" patch. Showing its corresponding input
sequences 𝑎 and 𝑓 , and the synchronized envelopes 𝑜𝑙 .

and generating note ends accordingly when a decay trajectory is
detected in the input.
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To this end, and following the design of other Tone Transfer
architectures, we employ a model that features a stateful Gated
Recurrent Unit (GRU) and a linear layer as output layer. The GRU
is a causal model that works frame-by-frame, is conditioned by the
𝑎 and 𝑓 sequences, and learns the relationships between current
and past inputs, producing a hidden state that is projected with
the linear layer into six controls for the oscillators. We denote the
neural net as the parameterized function 𝑔𝜙 as shown in Eqn. 1,
where 𝑘 denotes the frame index.

𝑜𝑙𝑘 = 𝑔𝜙 (𝑎𝑘 , 𝑓𝑘 ) (1)

Since we do not employ audio during our training process, we
train the network by conditioning it with 𝑎 and 𝑓 , and using the
oscillator envelopes 𝑜𝑙 from the dataset as supervision. We use the
L1 Loss between the oscillator envelope predictions and ground
truth as the minimization objective: 𝐿 = | |𝑜𝑙 − 𝑜𝑙 | |1. We call this
process Envelope Learning.

The L1 loss aims to match every single frame that is generated
by the network directly with the ground truth. This is unlike the
DDSP-based methods that learn to control envelopes indirectly
by employing a resynthesis objective, a spectrogram audio loss,
and noise synthesizers. This results in limited transient resolution,
as explained in the previous section. Learning in a direct fashion
allows us to explicitly address and reproduce transients during
training.

3.3 Inference
Model inference takes place within the Tone Transfer pipeline,
which takes an input audio signal 𝑖𝑛 , and yields a synthesized
output 𝑠𝑛 , with 𝑛 denoting the audio sample index. Similar to other
Tone Transfer approaches, we divide this pipeline into three stages:

(1) Feature Extraction, which obtains aligned features from in-
put audio 𝑎𝑘 and 𝑓𝑘 related to input amplitude and funda-
mental frequency 𝑓0𝑘 respectively, with 𝑘 denoting frame
index. These are extracted from input audio across an analy-
sis window of length𝑊 .𝐴(.) may denote a signal amplitude
or power estimator algorithm, 𝐹 (.) an 𝐹0 tracker, and 𝐺 (.) a
normalization function that maps 𝐹0 into the range [0, 1].

𝑎𝑘 = 𝐴(𝑖𝑊𝑘 , ...𝑖𝑊 (𝑘+1) )
𝑓0𝑘 = 𝐹 (𝑖𝑊𝑘 , ...𝑖𝑊 (𝑘+1) )

𝑓𝑘 = 𝐺 (𝑓0𝑘 )
(2)

(2) Control Prediction, we use our neural network 𝑔𝜙 to infer a
set of frame-wise FM synthesis controls, the oscillator output
levels 𝑜𝑙𝑘 , from the conditioning signals 𝑎𝑘 and 𝑓𝑘 .

𝑜𝑙𝑘 = 𝑔𝜙 (𝑎𝑘 , 𝑓𝑘 ) (3)

(3) An FM oscillator bank 𝑆𝑝 (.) renders a window of 𝑁 audio
samples from output levels 𝑜𝑙𝑘 , fundamental frequency 𝑓0𝑘 .
We configure the bank with the oscillator routing and fre-
quency ratios of the patch 𝑝 used to train 𝑔𝜙 , although this
can be changed during inference.

𝑠𝑁𝑘 , ...𝑠𝑁 (𝑘+1) = 𝑆𝑝 (𝑜𝑙𝑘 , 𝑓0𝑘 ) (4)

4 IMPLEMENTATION
4.1 Training
We select a set of commonDX7 patches and create a training dataset
for each one of them. Next, we train one neural net model per patch
following our Envelope Learning method.

For each patch, we generate 1000 random MIDI notes with veloc-
ities between 1 and 127, and note values between 0 and 127. We set
a random duration for each note between 600 and 732 frames. Next,
we generate the aligned input and oscillator envelope sequences
𝑎, 𝑓 , and 𝑜𝑙 , as described in Section 3.1. Finally, we pad them with
zeroes to reach a final size of 1000 frames per instance, so that the
active notes occupy about two-thirds of the total length. We split
the dataset with a ratio of [0.80, 0.1, 0.1] for training, validation,
and testing respectively.

Our neural net features a GRU with a hidden size of 128. We
empirically choose this value as we note that the training loss
does not improve with bigger models, and to keep the computing
requirements low. We train one model per dataset, for a total of
120000 steps, using the Adam optimizer with a learning rate of 1e-3,
a learning rate decay of 0.98 for every 10000 steps, and a batch
size of 32 instances. We use Pytorch as a training framework. The
process takes about four hours per model using a single NVIDIA
GeForce RTX 2080 Ti GPU.

To assess the effectivity of the training process, we compare on
the test set the absolute distance between the ground truth oscillator
envelopes and the predictions | |𝑜𝑙 − 𝑜𝑙 | |1 for each trained model.

Furthermore, we set out to assess the capabilities of each of the
trained networks for synthesizing audio with the learned timbre.
Firstly, we render audio using both the ground truth𝑜𝑙 and predicted
envelopes 𝑜𝑙 , using an FM oscillator block configured with the
oscillator routing and ratios extracted from the patches used to train
the models. We employ the fundamental frequency 𝑓0 extracted
from the normalized MIDI note values present in the sequences 𝑓
of the test set.

Next, we compute the signal-to-noise ratio (SNR) as a power
quotient of our reference and an error computed from the sample-
by-sample difference between both signals. We compute the SNR
in decibels (dB), as shown in Eqn. 5.

𝑆𝑁𝑅 = 10 · 𝑙𝑜𝑔10 (
| |𝑆𝑝 (𝑜𝑙, 𝑓0)2 | |1

| | (𝑆𝑝 (𝑜𝑙, 𝑓0) − 𝑆𝑝 (𝑜𝑙, 𝑓0))2 | |1
) (5)

We use this metric to assess the reconstruction quality of note
beginnings and endings. To account for note beginnings, we aggre-
gate the first 100 milliseconds of each note in the test set for both
rendered audios and then compute the SNR on these signals ob-
taining 𝑆𝑁𝑅𝑜𝑛𝑠𝑒𝑡 . We use 100 ms to account for the different onset
times that the models present. Furthermore, we identify the ending
sections of each note by looking at the decaying ramp in 𝑎, which
is aligned with 𝑜𝑙 in our dataset. We aggregate the audio samples
of each note and compute 𝑆𝑁𝑅𝑒𝑛𝑑 . We aggregate the rest of the
audio section of each note, between the note onset and the start of
the decaying ramp, and compute 𝑆𝑁𝑅𝑚𝑖𝑑 at the note middle.

Table 1 shows the results for the metrics. The low 𝐿1 loss indi-
cates that our model is able to minimize the training objective and
predict the oscillator envelope sequences from the conditioning
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signals. This translates into an adequate reproduction of note be-
ginnings, middles and endings; the SNR metrics show that even in
the worst case, the models can render the note sections with not
more than about 1% of power error.

Although these results do not represent our models’ performance
capabilities when deployed in a Tone Transfer pipeline, they show
that our training objective allows the networks to learn the en-
velope contours of the oscillators for different timbres, and can
accurately render the beginning, middles, and endings of notes
when conditioned with the continuous input sequences 𝑎 and 𝑓 .

Model Envelope 𝐿1 𝑆𝑁𝑅𝑜𝑛𝑠𝑒𝑡 𝑆𝑁𝑅𝑚𝑖𝑑 𝑆𝑁𝑅𝑒𝑛𝑑
Brass 7.77e-4 36.4 29.3 33.7
Strings 1.05e-3 29.4 34.4 34.9
E. Piano 3.06e-3 27.5 30.2 27.9
Marimba 8.07e-4 36.5 39.7 35.8
Voice 7.37e-4 19.5 33.3 30.0
Sitar 2.23e-3 22.2 25.3 27.2
PolySynth 1.36e-3 30.6 37.3 30.7

Table 1: Envelope absolute error and audio SNR at beginnings
and endings of the test set notes for all trained models.

4.2 Deployment
We implement the Tone Transfer pipeline on a real-time audio plu-
gin using JUCE and Libtorch, Pytorch’s C++ API. Our prototype can
load new neural net models and FM configurations, supporting all
the learned timbres. It runs in real-time and performs inference and
synthesis at a frame rate of 690 Hz, to render audio at a sample rate
of 44.1kHz, similar to our Yamaha DX7 reference implementation
[15].

Within the pipeline, we extract frame-wise fundamental fre-
quency 𝑓0𝑘 using the YIN algorithm [10], using an analysis window
of 1024 samples, which yields a minimum detectable frequency of
about 90 Hz. We compute the conditioning signal 𝑓𝑘 by converting
the fundamental frequency values from Hz to MIDI note value and
then applying normalization between [0, 1], as shown in Eqn. 6.
Furthermore, when a valid fundamental frequency is not detected,
the extractor returns zero.

𝑓𝑘 = 12
𝑙𝑜𝑔2 (𝑓0𝑘/220) + 57.01

127
(6)

Next, we supply the continuous amplitude input for our system
𝑎 from a decibel-scale RMS detector. We employ a compute block
over a sliding window𝑊 , clamping the minimum value to -70dB,
and normalizing between 0 to 1.

𝑎𝑘 = 1 + 1
70

·𝑚𝑎𝑥 (−70, 𝑙𝑜𝑔10 (
∑︁
𝑊

𝑖2𝑛
𝑊

)) (7)

Since our datasets (and therefore, our trained models) present a lin-
ear amplitude range in 𝑎, our system tries to match normalized RMS
in decibels to envelope variations associated with MIDI velocity.

Next, our model predicts the current envelope values for the
FM synth, which are interpolated from frame to sample rate and
used for the synthesis process. The fundamental frequency 𝑓0𝑘 is

also linearly interpolated and used to drive the oscillators at the
synthesis step.

Furthermore, we reset the model’s hidden state to all zeroes
when both conditioning sequences are zero. This ensures that the
model starts from a known state to process a new incoming note.
The plugin runs on a MacBook Pro 2021 with a USB audio interface
running at 44.1 kHz and a hop size of 64 samples, yielding a pipeline
delay of 3 ms including buffering.

5 DISCUSSION
Our model offers the capability to generate a wide range of timbres
on an FM synthesizer by learning the dynamic trajectories of oscil-
lator envelopes reflected in the dataset. Our approach effectively
replaces the traditional envelope generator of the DX7 with a recur-
rent neural network (RNN) that provides continuous controllability
instead of MIDI.

In this context, the dataset generation approach serves as the
bridge between explicit note beginnings and endings, which are
event-based, and the continuous control framework. When trained
with our Envelope Learning method, the network is able to learn
and reproduce the rapid beginnings and endings of notes, even
without explicit information about note boundaries.

Previous Tone Transfer architectures learn to control synthe-
sizers indirectly by minimizing an audio loss of a resynthesis task,
using spectrogram losses that act upon long windows of audio.
These effectively look at the middle of musical events and present a
limited temporal resolution for beginnings and endings. In contrast,
our approach overcomes this limitation by learning a direct corre-
spondence between inputs and synthesis parameters at a control
level. This allows for precise rendering of the transient characteris-
tics of the learned timbre, provided we have a representation of that
timbre available in the form of a synthesizer patch. We argue these
are the first steps for achieving expressive and nuanced synthesizer
articulation with Tone Transfer algorithms.

We suggest that these results are encouraging to explore the
Envelope Learning technique building further input-output associ-
ations. One possibility would be to align additional input features
such as spectral features to other sound characteristics like attack
and decay rates. Another would be to introduce multiple notes per
training instance to explicitly model phrasing in context, modeling
note events of specific musical instruments in the dataset for a
more nuanced control. Other alternatives include exploring further
conditioning choices to assess responsivity in terms of dynamics,
modifying the trapezoidal amplitude note model in 𝑎 to better ac-
count for particular instruments and input detectors, or training
using patch data from other synthesizer architectures.

5.1 Reflections on performances
As a proof of concept, we record two musicians using our audio plu-
gin in real-time, playing guitar and sax 2. We select these two source
instruments since they provide very different volume dynamics and
articulations to drive our plugin. We record three models, trained
with electric piano, strings, and brass patches respectively.

We informally observe that our Tone Transfer approach can
effectively render timbre from the learned patches, including note
2The video is available on the supplementary website

https://fcaspe.github.io/fmtransfer
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beginnings. This is reflected particularly well in the example of the
guitar controlling the electric piano, which shows a bright attack
on the beginning of those notes that are not legato. Next, in the
guitar example that plays a string tone, the synthesizer features a
slow attack, even though the guitar is plucked, showing that our
model does not project input loudness to the output, as DDSP does.

Note endings are much more difficult to assess since their gener-
ation depends on a decaying amplitude envelope presented by the
audio input. On the guitar, the decay envelope may be too fast to
render the learned note ending before the fundamental frequency
cannot be tracked anymore.

For the case of the saxophone as a control source, note begin-
nings and endings are not that clear, but this is to be expected as it
presents a much different amplitude contour, including amplitude
modulations that were not accounted for during dataset generation.
These may force the model to re-render note characteristics of be-
ginnings or endings, which can be observed when the saxophone
controls the electric piano.

On the other hand, we note a lack of dynamic range in the
synthesis output. We argue that this is due to the fact that the
patches were originally designed to be played with a keyboard with
MIDI notes and velocity controls. For the electric piano patch, for
instance, we observe that a low-velocity value still produces a signal
with high amplitude but less brightness. Redesigning the patches
to obtain higher variations in output amplitude and retraining the
models may improve the results.

6 CONCLUSIONS
Transforming the audio of an instrument to a synthetic sound
is a challenging task, as it involves a one-to-many relationship.
Each instrument has its unique timbral palette, dynamic contour,
and articulation possibilities, which can vary significantly even
among instruments of the same type. On the other hand, the sound
produced by a synthesizer can be highly versatile; and only a subset
of the source instrument’s characteristics may be desired in the
output.

We can argue that there is no definitive "gold standard" that can
provide a baseline mapping between an instrument’s audio and a
synthetic sound: tradeoffs are necessary to find viable solutions.

In this work, we first analyzed current Tone Transfer architec-
tures and identified a tradeoff in their rendering capabilities: these
models learn new timbres from audio corpora and can project the
input loudness to the output, at the expense of a good resolution
of note beginnings and endings which are essential for musical
articulation and phrasing.

In light of the analyzed shortcomings, we presented Envelope
Learning, a design method where a model learns a set of input-to-
synthesis parameters correspondences and accurately replicates
note beginnings and endings. The tradeoff, in this case, is on the
note middles: we use a simplified musical note model for our dataset
generation that does not consider variations in amplitude or pitch
during an event. This works well during testing in the training
environment but may result in unexpected transitions and reduced
dynamic rangewhen used in a Tone Transfer setting, especiallywith
sustaining instruments. We leave for future work an assessment of

the performance possibilities of our algorithm and an exploration
of techniques to overcome current limitations.

Finally, we implemented a Tone Transfer pipeline in an audio
plugin for real-time performance, taking a step towards improving
sound diversity and phrasing capabilities for audio-based control
of synthesizers. Our system bridges the sonic diversity gap of pre-
vious approaches, learning new sounds from a vast number of DX7
patches for which their timbre can now be continuously controlled
with musical instruments. We hope that our work motivates further
research in model design with the goal of improving phrasing and
articulation in real-time neural synthesizers controlled by musical
instruments.
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